Features

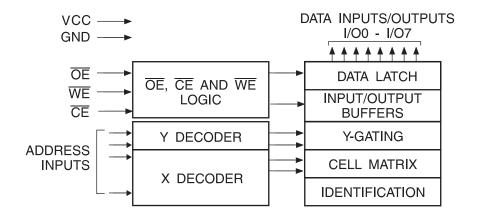
- Single 2.7V 3.6V Supply
- Fast Read Access Time 200 ns
- Automatic Page Write Operation
 - Internal Address and Data Latches for 64 Bytes
 - Internal Control Timer
- Fast Write Cycle Times
 - Page Write Cycle Time: 10 ms Maximum
 - 1- to 64-byte Page Write Operation
- Low Power Dissipation
 - 15 mA Active Current
 - 20 µA CMOS Standby Current
- Hardware and Software Data Protection
- Data Polling for End of Write Detection
- High Reliability CMOS Technology
 - Endurance: 10,000 Cycles
 - Data Retention: 10 Years
- JEDEC Approved Byte-wide Pinout
- Industrial Temperature Ranges
- Green (Pb/Halide-free) Packaging Option

1. Description

The AT28BV256 is a high-performance electrically erasable and programmable read-only memory. Its 256K of memory is organized as 32,768 words by 8 bits. Manufactured with Atmel's advanced nonvolatile CMOS technology, the device offers access times to 200 ns with power dissipation of just 54 mW. When the device is deselected, the CMOS standby current is less than 200 μ A.

The AT28BV256 is accessed like a Static RAM for the read or write cycle without the need for external components. The device contains a 64-byte page register to allow writing of up to 64 bytes simultaneously. During a write cycle, the addresses and 1 to 64 bytes of data are internally latched, freeing the address and data bus for other operations. Following the initiation of a write cycle, the device will automatically write the latched data using an internal control timer. The end of a write cycle can be detected by Data polling of I/O7. Once the end of a write cycle has been detected a new access for a read or write can begin.

Atmel's AT28BV256 has additional features to ensure high quality and manufacturability. The device utilizes internal error correction for extended endurance and improved data retention characteristics. An optional software data protection mechanism is available to guard against inadvertent writes. The device also includes an extra 64 bytes of EEPROM for device identification or tracking.



256K (32K x 8)
Battery-Voltage
Parallel
EEPROMs

AT28BV256

3. Block Diagram

4. Absolute Maximum Ratings*

Temperature under Bias55°C to +125°C
Storage Temperature65°C to +150°C
All Input Voltages (including NC Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to V _{CC} + 0.6V
Voltage on $\overline{\text{OE}}$ and A9 with Respect to Ground0.6V to +13.5V

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

6. DC and AC Operating Range

	AT28BV256-20
Operating Temperature (Case)	-40°C - 85°C
V _{CC} Power Supply	2.7V - 3.6V

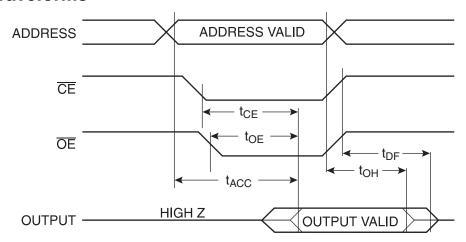
7. Operating Modes

Mode	CE	ŌĒ	WE	I/O
Read	V _{IL}	V _{IL}	V _{IH}	D _{OUT}
Write ⁽²⁾	V _{IL}	V _{IH}	V _{IL}	D _{IN}
Standby/Write Inhibit	V _{IH}	X ⁽¹⁾	X	High Z
Write Inhibit	Х	X	V _{IH}	
Write Inhibit	Х	V _{IL}	Х	
Output Disable	Х	V _{IH}	Х	High Z
Chip Erase	V _{IL}	V _H ⁽³⁾	V _{IL}	High Z

Notes: 1. X can be V_{IL} or V_{IH}.

2. Refer to AC programming waveforms.

3. $V_H = 12.0V \pm 0.5V$.

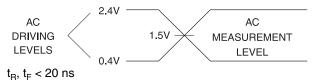

8. DC Characteristics

Symbol	Parameter	Condition	Min	Max	Units
I _{LI}	Input Load Current	$V_{IN} = 0V \text{ to } V_{CC} + 1V$		10	μΑ
I _{LO}	Output Leakage Current	$V_{I/O} = 0V \text{ to } V_{CC}$		10	μΑ
I _{SB}	V _{CC} Standby Current CMOS	$\overline{\text{CE}} = \text{V}_{\text{CC}} - 0.3 \text{V to V}_{\text{CC}} + 1 \text{V}$		50	μΑ
I _{CC}	V _{CC} Active Current	f = 5 MHz; I _{OUT} = 0 mA		15	mA
V _{IL}	Input Low Voltage			0.6	V
V _{IH}	Input High Voltage		2.0		V
V _{OL}	Output Low Voltage	I _{OL} = 1.6 mA		0.3	V
V _{OH}	Output High Voltage	I _{OH} = -100 μA	2.0		V

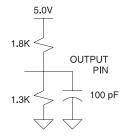
9. AC Read Characteristics

		AT28BV256-20		
Symbol	Parameter	Min	Max	Units
t _{ACC}	Address to Output Delay		200	ns
t _{CE} ⁽¹⁾	CE to Output Delay		200	ns
t _{OE} ⁽²⁾	OE to Output Delay	0	80	ns
t _{DF} ⁽³⁾⁽⁴⁾	CE or OE to Output Float	0	55	ns
t _{OH}	Output Hold from OE, CE or Address, whichever occurred first	0		ns

10. AC Read Waveforms⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾


Notes: 1. \overline{CE} may be delayed up to t_{ACC} - t_{CE} after the address transition without impact on t_{ACC} .

- 2. $\overline{\text{OE}}$ may be delayed up to t_{CE} t_{OE} after the falling edge of $\overline{\text{CE}}$ without impact on t_{CE} or by t_{ACC} t_{OE} after an address change without impact on t_{ACC} .
- 3. t_{DF} is specified from \overline{OE} or \overline{CE} whichever occurs first ($C_L = 5 \text{ pF}$).
- 4. This parameter is characterized and is not 100% tested.



11. Input Test Waveforms and Measurement Level

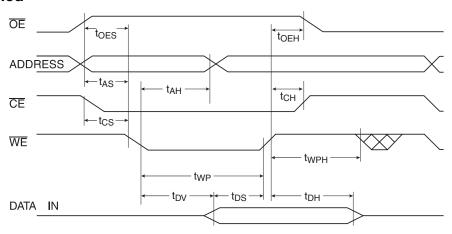
12. Output Test Load

13. Pin Capacitance

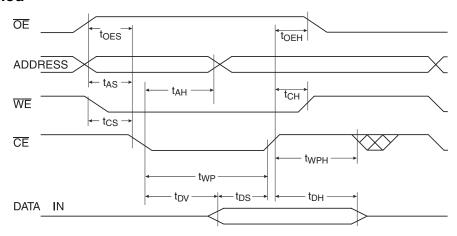
 $f = 1 \text{ MHz}, T = 25^{\circ}C^{(1)}$

Symbol	Тур	Max	Units	Conditions
C _{IN}	4	6	pF	$V_{IN} = 0V$
C _{OUT}	8	12	pF	$V_{OUT} = 0V$

Note: 1. This parameter is characterized and is not 100% tested.


14. AC Write Characteristics

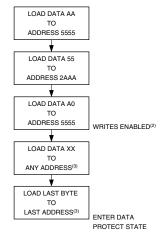
Symbol	Parameter	Min	Max	Units
t _{AS} , t _{OES}	Address, OE Set-up Time	0		ns
t _{AH}	Address Hold Time	50		ns
t _{CS}	Chip Select Set-up Time	0		ns
t _{CH}	Chip Select Hold Time	0		ns
t _{WP}	Write Pulse Width (WE or CE)	200		ns
t _{DS}	Data Set-up Time	50		ns
t _{DH} , t _{OEH}	Data, $\overline{\text{OE}}$ Hold Time	0		ns
t _{DV}	Time to Data Valid	NR ⁽¹⁾		


Note: 1. NR = No Restriction.

15. AC Write Waveforms

15.1 WE Controlled

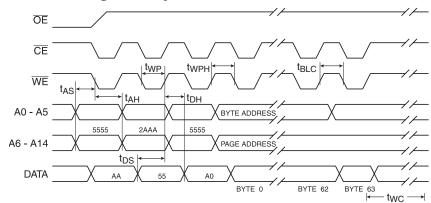
15.2 **CE** Controlled



16. Page Mode Characteristics

Symbol	Parameter	Min	Max	Units
t _{WC}	Write Cycle Time		10	ms
t _{AS}	Address Set-up Time	0		ns
t _{AH}	Address Hold Time	50		ns
t _{DS}	Data Set-up Time	50		ns
t _{DH}	Data Hold Time	0		ns
t _{WP}	Write Pulse Width	200		ns
t _{BLC}	Byte Load Cycle Time		150	μs
t _{WPH}	Write Pulse Width High	100		ns

17. Programming Algorithm⁽¹⁾⁽²⁾⁽³⁾



Notes: 1. Data Format: I/O7 - I/O0 (Hex); Address Format: A14 - A0 (Hex).

2. Data protect state will be re-activated at the end of program cycle.

3. 1 to 64 bytes of data are loaded.

18. Software Protected Program Cycle Waveforms⁽¹⁾⁽²⁾⁽³⁾

Notes: 1. A0 - A14 must conform to the addressing sequence for the first three bytes as shown above.

- 2. A6 through A14 must specify the same page address during each high to low transition of WE (or CE) after the software code has been entered.
- 3. \overline{OE} must be high only when \overline{WE} and \overline{CE} are both low.

24. Ordering Information

25. Standard Package

t _{ACC}	I _{CC} (mA)				
(ns)	Active	Standby	Ordering Code	Package	Operation Range
000	45		AT28BV256-20JI AT28BV256-20PI	32J 28P6	Industrial
200	15	0.02	AT28BV256-20SI	28S	(-40° to 85°C)
			AT28BV256-20TI	28T	

Note: 1. See Valid Part Numbers table below.

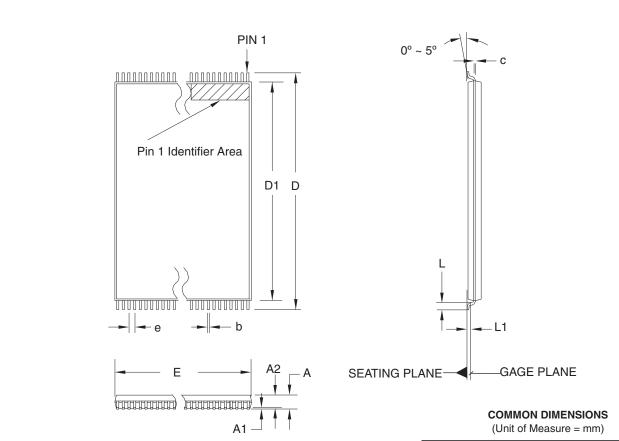
26. Green Package Option (Pb/Halide-free)

t _{ACC}	I _{CC} (mA)					
(ns)	Active	Standby	Ordering Code	Package	Operation Range	
	15 0.02	AT28BV256-20JU	32J			
200		15 0.02	0.00	AT28BV256-20TU	28T	Industrial
200		0.02	AT28BV256-20SU	27S	(-40° to 85°C)	
			AT28BV256-20PU	28T		

27. Valid Part Numbers

The following table lists standard Atmel products that can be ordered.

Device Numbers	Speed	Package and Temperature Combinations
AT28BV256	20	JI, PI, SI, TI, TU, JU, SU, PU


28. Die Products

Reference Section: Parallel EEPROM Die Products

	Package Type					
32J	32-lead, Plastic J-leaded Chip Carrier (PLCC)					
28P6	28-lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)					
28\$	28-lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)					
28T	28-lead, Plastic Thin Small Outline Package (TSOP)					

29.4 28T - TSOP

Notes:

- 1. This package conforms to JEDEC reference MO-183.
- 2. Dimensions D1 and E do not include mold protrusion. Allowable protrusion on E is 0.15 mm per side and on D1 is 0.25 mm per side.
- 3. Lead coplanarity is 0.10 mm maximum.

SYMBOL	MIN	NOM	MAX	NOTE
А	_	_	1.20	
A1	0.05	_	0.15	
A2	0.90	1.00	1.05	
D	13.20	13.40	13.60	
D1	11.70	11.80	11.90	Note 2
E	7.90	8.00	8.10	Note 2
L	0.50	0.60	0.70	
L1	0.25 BASIC			
b	0.17	0.22	0.27	
С	0.10	_	0.21	
е	0.55 BASIC			

		DRAWING NO.	REV.
2325 Orchard Parkway San Jose, CA 95131	28T , 28-lead (8 x 13.4 mm) Plastic Thin Small Outline Package, Type I (TSOP)	28T	С

